Tools of Finite-time Thermodynamics
نویسندگان
چکیده
Finite-time thermodynamics is the extension of traditional reversible thermodynamics to include the extra requirement that the process in question goes to completion in a specified finite length of time. As such it is by definition a branch of irreversible thermodynamics, but unlike most other versions of irreversible thermodynamics, finite-time thermodynamics does not require or assume any knowledge about the microscopics of the processes, since the irreversibilities are described by macroscopic constants such as friction coefficients, heat conductances, reaction rates and the like. Some concepts of reversible thermodynamics, such as potentials and availability, generalize nicely to finite time, others are completely new, e.g. endoreversibility and thermodynamic length. The basic ideas of finite-time thermodynamics are reviewed and several of its procedures presented, emphasizing the importance of power and rate of entropy production. Finally, its impact on the global optimization algorithm simulated annealing is outlined.
منابع مشابه
Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle
In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...
متن کاملExergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle
In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...
متن کاملFinite-time Thermodynamics Tools to Analyze Dissipative Processes
“Staging free energy” is a term introduced to describe the necessary investment of free energy into a thermodynamic system to allow certain near equilibrium processes to proceed in a desired direction and in finite time (Chapter 4). Such processes may seem—if viewed detached from their surroundings—to be truly reversible. However, if one views them together with the changes occurring in their e...
متن کاملFinite-time Thermodynamics and Simulated Annealing
Finite-time thermodynamics is the extension of traditional reversible thermodynamics to include the extra requirement that the process in question goes to completion in a specified finite length of time. As such it is by definition a branch of irreversible thermodynamics, but unlike most other versions of irreversible thermodynamics, finite-time thermodynamics does not require or assume any kno...
متن کاملCurrent trends in finite-time thermodynamics.
The cornerstone of finite-time thermodynamics is all about the price of haste and how to minimize it. Reversible processes may be ultimately efficient, but they are unrealistically slow. In all situations-chemical, mechanical, economical-we pay extra to get the job done quickly. Finite-time thermodynamics can be used to develop methods to limit that extra expenditure, be it in energy, entropy p...
متن کامل